Tekil Mesaj gösterimi
Alt 3. October 2008, 01:54 PM   #2
EVVAB_İNSAN
Uzman Üye
 
EVVAB_İNSAN - ait Kullanıcı Resmi (Avatar)
 
Üyelik tarihi: Sep 2008
Mesajlar: 220
Tesekkür: 35
42 Mesajina 53 Tesekkür Aldi
Tecrübe Puanı: 16
EVVAB_İNSAN is on a distinguished road
Standart

Bazıları itiraz olarak insanların yaptıkları makinelerin veya binaların düzensizlikten düzene geçiş olduğunu, ayrıca negatif entropi aldığımız bitkilerin varlığının da entropi yasası ile çeliştiğini söyleyebilir. Burada dikkat edilmesi gerekli nokta, termodinamiğin ikinci yasasının izole (isolated) bir sistemdeki toplam entropinin arttığını söylemesidir. Evrenin bir bölümünde oluşan düzenin bedeli, mutlaka başka bir bölümünde daha büyük çapta bir düzensizlik olarak ödenir. Örneğin bir binayı ele alalım. Binanın yapımı için kullanılan maddeler (demir, tahta, v.b) dünyanın hammadde kaynakları yok edilerek elde edilir, ayrıca binanın yapımı için belli miktarda bir enerji sarf edilir. Tam bir hesap yapıldığında yol açılan düzensizliğin miktarı her zaman düzenden fazladır. Canlıların hepsi çevrelerinden negatif entropi alarak yaşarlar. Biz bitkilerden veya bitkileri yiyen hayvanlardan negatif entropi alırız, bitkiler ise fotosentezle Güneş’ten negatif entropi alarak yaşarlar.

Bu yüzden Bertrand Russell, her canlı varlığın çevresinden kendisi ve nesilleri için mümkün olduğunca çok enerji alan bir çeşit emperyalist olduğunu söylemiştir. Fakat her canlının beslenmesi, çevresinde daha büyük bir düzensizlik oluşturur. Örneğin sürecin her safhasında çekirge yaprağı, kurbağa çekirgeyi, alabalık da kurbağayı yediğinden, sürekli bir miktar enerji kaybolur. Miller’e göre beslenme sürecinde enerjinin %80-90’ı ısı halinde çevreye yayılır. Enerjinin sadece %10-20’si bir sonraki aşama için canlının dokusunda kalır. Bir insanı bir yıl beslemek için 300 alabalık gerektiğini varsayalım; bu balıklar ise 1000 ton ot tüketerek yaşayan 27 milyon çekirge tüketen 90.000 kurbağayı yemeleri (negatif entropi almaları) sayesinde varlıklarını sürdürürler. Bir bitki, havadan karbondioksit molekülü, topraktan su alarak ve Güneş ışınlarını kullanarak basit moleküllerden karmaşık moleküller yapar; basit moleküllerden karmaşık moleküller yapmak entropi azalması anlamına gelir, fakat yine de entropi yasası ihlal edilmemiştir.

Bitkiler de diğer canlılar gibi “açık sistemler”dir ve kendi düzenlerinin bedeli olarak çevrede daha çok düzensizlik oluştururlar. Güneş’in sürekli artan entropisine ve toprağın bozulan düzenine karşı, bitkilerdeki negatif entropi artışı çok azdır. Yapılan hesaplar canlıların, makinelerin ve tüm düzenli yapıların düşen entropilerinin bedelinin sistemin bütününde daha çok entropi artışı olarak ödendiğini ve termodinamiğin ikinci yasasının hiç bir şekilde ihlal edilmediğini göstermektedir.

19. yüzyıla Newton fiziğinin hakimiyeti altında girildi. Bu fiziğin yasalarında mutlak determinizm, mutlak uzay ve zaman ile zamanda tersinirlik vardı. Mutlak deterministik matematiksel yasalar sayesinde kırk yıl sonraki olacak veya elli yıl önceki olmuş Güneş tutulmalarının zamanını tam olarak tespit etmek mümkündü. Uzay ve zaman birbirlerinden ve hareket halindeki gök cisimlerinden etkilenmeyen mutlak varlıklar olarak algılanıyorlardı. Yokuşu çıkan inebilirdi, ileriye doğru giden cisimler geriye dönebilirdi ve sağa doğru hareket eden sarkaç sola da gidebilirdi; tüm bu tersinir süreçler fiziğin hareket yasaları ihlal edilmeden gerçekleşiyordu.

Zamanın ve uzayın mutlaklığına dair görüş 20.yüzyılda Einstein’ın özel ve genel izafiyet teorilerini ortaya koyuşu ile değişti. Einstein gök cisimlerinin, uzayın, objektif ve subjektif zamanın, birbirleriyle bağlantılı olduğunu gösterip; klasik mekaniğin birbirinden bağımsız, mutlak uzay ve zaman tasarımını düzeltti. Einstein fiziğinde mutlak olan ışığın hızıdır ve bu fizik de, Newton yasaları kadar deterministtir. Makronun fiziğindeki determinist yaklaşım, Einstein ile 20. yüzyılda devam etse de, yine aynı yüzyılda mikronun fiziğine dair kuantum kuramının “belirsizlik ilkesi” ile tartışma konusu olmuştur. Heisenberg gibi “belirsizlik ilkesi”ni, doğanın indeterminist yapıda olduğunun bir delili sayanlar olmasına karşın, Planck ve Einstein gibi belirsizliğin, bizim teorilerimizin eksikliğinden ve gözlem yeteneğimizin mikrodaki sınırlılığından kaynaklandığını savunanlar da olmuştur. Kuantum kuramı da entropi yasası gibi olasılıkçı bir yaklaşım getirmiştir. Fakat termodinamik yasalar üzerindeki ittifakın kuantum kuramı üzerinde gerçekleşmediğini hatırlamalıyız. Ayrıca termodinamiğin ikinci yasası olasılıkçı olmasına karşın, kuantum kuramının tartışılan yorumu gibi evrenin indeterminist bir yapıda olduğunu söylemez. Entropi yasasının Newton ve Einstein fiziğiyle aynı şekilde determinist yapıda olmasına ve kuantum kuramında olduğu gibi olasılıkçı yaklaşımda bulunmasına karşın, tüm bu kuramlardan farklı yanı, tek-yönlü ve tersinemez bir yasanın evrenin en temel yasası olduğunu göstermesidir.

Bu yasanın bizce en önemli özelliği bu tek yönlü, tersinemez yapısıdır. Entropinin oku zamanla aynı yönde ilerlemektedir. Bu yüzden zaman üzerine yapılacak ontolojik bir tartışma açısından entropi yasası özel önem taşır. Bu yasa, süreci önemli kılarak, zamanın fiziksel oluşumlardaki payını ortaya koyar. Fakat yine de zamanı, entropinin bir fonksiyonu olarak gören anlayışın hatalı olduğu kanaatindeyiz. Çünkü evrenin her yerinde zaman artar; temelde “önce ve “sonra” dizilme ile ilgili olan zamanın, evrenin hiçbir yerinde istisnası olmaz ve olasılıkçı bir yapıyla da alakası yoktur. Oysa evrendeki entropinin artışı toplam olaraktır; evrenin bir yerinde düzenin artması entropi yasasına aykırı değildir. Zaman ise entropiden daha kesin ilerler; evrenin hiçbir köşesindeki zaman, başka bir yerde zaman daha ileriye götürülmek suretiyle geriye çevrilemez. Bu yüzden, entropi artışının oku ile zamanın oku aynı yönde olsa da, entropi artışı ile zamanı özdeşleştirmek hatalıdır.

Entropi ile ilgili diğer önemli bir yanılgı ise entropideki artışın evrenin genişlemesine bağlanmasıdır. Önce Einstein’ın formüllerine dayanarak Lemaitre ve Friedmann evrenin genişlediğini teorik düzeyde ortaya koydular. 1920’ler ve 1930’larda Edwin Hubble, Vesto Slipher ve Milton Humason gibi astronomların Mount Wilson Gözlemevi’nde yaptıkları gözlemler ise evrenin genişlediğini gözlemsel verilerle de destekledi. Bazı fizikçiler, moleküllerin dağılması ile ilgili yasaların da etkisiyle, entropinin artışının sebebinin evrenin genişlemesi olduğunu zannettiler ve eğer evrende yerçekiminin etkisi galip gelir de evren kapanmaya başlarsa entropinin düşeceğini söylediler. Entropiyi sadece gazların dağılımı şeklinde düşünmek, çekim gücünün toplayıcı etkisinin entropiyi düşürdüğü yanılgısına sebep olmuştur. Gazların zamanla geniş bir alana dağılmasının entropi artışı olması gibi, zaman sürecinin sonunda oluşan karadelikler de yüksek bir entropi düzeyine karşılık gelirler. Stephen Hawking’in karadelikler hakkındaki ünlü keşfine yol açan da, bu gök cisimlerinde termodinamiğin ikinci yasasının geçerli olduğunu bulması olmuştur. Bu da gösteriyor ki entropi yasası sadece sabit veya genişleyen boyutlarda işlemez, karadelikler gibi küçülen boyutlar da entropi artışını temsil edebilirler. Eğer evrende yerçekimi bir gün galip gelir ve evren Büyük Çatırtı’ya (Big Crunch) doğru kapanışa geçerek büzülmeye başlarsa da entropinin artışı devam edecektir. Evrende sürekli maddeden ışınıma bir enerji transferi olmaktadır. Bu yüzden, Richard Tolman’ın çalışmalarının da gösterdiği gibi, evren eğer bir kapanışa geçerse de; bu kapanış, evrenin genişlemesinin simetriği olamaz ve evren açılışından daha hızlı çöker. Biriken ışınım bir entropi büyümesini temsil eder ve bu da, bu evrende entropideki yükselişten hiçbir şekilde kaçılamayacağını gösterir.
__________________
Gerçekler Bizi Özgür Kılar...
EVVAB_İNSAN isimli Üye şimdilik offline konumundadır   Alıntı ile Cevapla